

NUCLEAR POWER PLANTS: GEN3+ DESIGN & FUEL

Ing. Enrico Mainardi Ph.D.

ASSISI, November 22, 2013

EVOLUTION OF NUCLEAR REACTORS:

Early Prototype Reactors

- Shippingport
- Dresden, Fermi I
- Magnox

In Italy: Trino, Latina,

Generation II

Commercial Power Reactors

- LWR-PWR, BWR CANDU
- AGR

ABWR System 80+

Generation III+

Evolutionary

Designs Offering Improved Economics for Near-Term

Generation IV

- Highly Economical
- Enhanced Safety
- Minimal Waste
- Proliferation Resistant

G	arigliano	In	Italy: Cao	orso					
Gen I		Gen II			Gen III		Gen III+	Gen IV	
1950	1960	1970	1980	1990	2000	2010	2020	2030	

GENERATION III+ REACTORS

- Design largely based on a probabilistic safety approach and on lessons learned from Three Miles Island and Chernobyl accidents
- They are a consistent step forward in the technology, extensively tested and reviewed by safety authorities through a ten years long process
- Two main types of design approach:
 - Evolutionary approach: improvement of redundancy and independence of «standard» safety features (EPR from AREVA)
 - Alternate approach: extensive use of passive safety features to prevent common mode failures and/or operator errors (AP1000, Westinghouse)

AnsaldoNucleare

Both EPR and AP1000 are Pressurized Water Reactors

Now under construction: 4 EPR, 8 AP1000

GENERATION III+ REACTORS

Improved Defense in Depth

the containment system is designed to withstand core melt scenarios through:

- retention & cooling of corium (in vessel or through core catcher)
- Hydrogen control (igniters and/or recombiners)
- Independent cooling systems (totally passive in the case of AP1000)

so ensuring independence towards other barriers

Lower risk of Total station Blackout

The AP1000 has no need of diesels to withstand an accident

Lower dependance on operator action

The AP1000 doesn't require any operator action for 72 hours after an accident.

Generation3 & 3+ reactors are addressing many of the safety issues ralsed by the Fukushima accident.

Acceptability requires reduced socio-economic consequences

AnsaldoNucleare

FUEL LOADED INTO A NPP:

• About 435 reactors (370 GWe), require 78,000 tUO2 concentrate, containing 66,000 tU from mines or secondary sources each year.

Capacity is growing slowly and reactors are being run more productively, with higher capacity factors, and reactor power levels.
From 1970 there was a 25% reduction in uranium demand per kWh output in Europe due to Increased efficiencies.

•Many utilities are increasing the initial enrichment of fuel (from 3.3 to 5.0%) and then burning it longer.

Cost of the fuel loaded into NPPs (UxC data 2013):

- About 1/2 cost of U supply (mine or secondary).
- About 1/2 cost of enrichment & fuel fabrication, with a small element for uranium conversion.
- •In the past it was 1/3 for U supply, 2/3 for the rest.

•Demand for Ufuel more predictable (than other mineral commodity) because of the cost structure of nuclear power generation (high capital, low fuel costs).

Most trade is via 3-15 year term contracts. Euratom price is the average price of U3O8 delivered into the EU that year under long term contracts (often related to the spot price at the time of delivery)

Thank you for your attention!